skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Greb, Lutz"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract “How strong is this Lewis acid?” is a question researchers often approach by calculating its fluoride ion affinity (FIA) with quantum chemistry. Here, we present FIA49k, an extensive FIA dataset with 48,986 data points calculated at the RI‐DSD‐BLYP‐D3(BJ)/def2‐QZVPP//PBEh‐3c level of theory, including 13 differentp‐block atoms as the fluoride accepting site. The FIA49k dataset was used to train FIA‐GNN, two message‐passing graph neural networks, which predict gas and solution phase FIA values of molecules excluded from training with a mean absolute error of 14 kJ mol−1(r2=0.93) from the SMILES string of the Lewis acid as the only input. The level of accuracy is notable, given the wide energetic range of 750 kJ mol−1spanned by FIA49k. The model's value was demonstrated with four case studies, including predictions for molecules extracted from the Cambridge Structural Database and by reproducing results from catalysis research available in the literature. Weaknesses of the model are evaluated and interpreted chemically. FIA‐GNN and the FIA49k dataset can be reached via a free web app (www.grebgroup.de/fia‐gnn). 
    more » « less